
Rational Secure Computation and Ideal Mechanism Design

Sergei Izmalkov
Dept of Economics

MIT

Silvio Micali
CSAIL
MIT

Matt Lepinski
CSAIL
MIT

Abstract

Secure Computation essentially guarantees that
whatever computation n players can do with the help of
a trusted party, they can also do by themselves. Funda-
mentally, however, this notion depends on the honesty
of at least some players.

We put forward and implement a stronger notion,
Rational Secure Computation, that does not depend on
player honesty, but solely on player rationality. The
key to our implementation is showing that the ballot-
box—the venerable device used throughout the world
to tally secret votes securely—can actually be used to
securely compute any function.

Our work bridges the fields of Game Theory and
Cryptography, and has broad implications for Mecha-
nism Design.

1 The Case for Rational Security

Secure Computation. The general notion of Se-
cure Computation was put forward and first exempli-
fied by Goldreich, Micali and Wigderson [8], building
on earlier two-party results of Yao [17]. Given a joint
computation among n players and a trusted party, Se-
cure Computation aims at removing the trusted party
without suffering any correctness or privacy loss. A
bit more precisely, all prior secure-computation work—
by now quite extensive— adopts the original ideal/real
paradigm, illustrated below in the crucial, special case
of a secure function evaluation (SFE for short).

An ideal evaluation of a (possibly probabilistic) n-
input, n-output function f consists of the following pro-
cess. Each player i has a private input, xi, and is as-
sumed to be honest or malicious. An honest i simply
confides his original xi to a trusted party. Malicious
players may instead perfectly coordinate their actions,
so as to compute and report to the trusted party al-
ternative inputs x′j for every malicious player j. The
trusted party then evaluates f on all reported inputs,

so as to generate a vector of outputs (y1, . . . , yn), and
privately hands out yi to each player i.

A real evaluation of f consists of a communication
protocol executed by the n players alone: that is, the
players (without any external help) evaluate f on their
private inputs by exchanging messages back and forth
using a specified communication channel. Honest play-
ers always send their messages according to their pre-
scribed protocol instructions. Malicious players may
instead deviate from their instructions in an arbitrary
manner, and even perfectly coordinate their communi-
cation strategies before and during the protocol.

Finally, an SFE of f is a real evaluation of f that
guarantees the same privacy and correctness as an ideal
evaluation. In essence, the ideal/real paradigm consists
of security preservation. The ideal setting captures the
desired correctness and privacy achievable in the pres-
ence of malicious players, and SFE (more generally,
Secure Computation) guarantees that whatever mali-
cious players could accomplish in a real evaluation they
could also accomplish in the ideal one.

Game Theory. In Game Theory, strategic interac-
tions among n players are formally modeled as games.
In this paper, we are concerned with finite versions of
a very general class of mediated games of incomplete
information. In their normal form, each player has his
own private type ti, where (t1, . . . , tn) are drawn from
some publicly known, joint distribution. Players do
not communicate with each other —conceptually, they
are isolated in separate rooms. Instead, each player i
privately sends a report mi (an element of his finite
message space Mi) to a trusted mediator. The medi-
ator then evaluates a specified, possibly probabilistic,
finite function on the received reports so as to com-
pute a public outcome y, and each player i’s payoff is
defined, via his specific utility function ui, as ui(y, ti)
—more generally, as ui(y, t1, . . . , tn).

How will such a game be played? For this as for all
other kinds of games, Game Theory predicts that ratio-
nal players will end up in equilibrium. Rational play-



ers are those always acting to maximize their expected
payoffs. An equilibrium essentially consists of an n-
tuple of strategies (i.e., ways to choose actions —in the
case at hand, reports to be sent to the mediator), such
that no player will receive a greater payoff if he deviates
from his strategy: provided that all other players stick
to theirs (in a Nash equilibrium), or no matter what the
other players might do (in a dominant-strategy equi-
librium).1 But while Game Theory predicts that an
equilibrium is how rational players will play, it is ag-
nostic as to which equilibrium will actually be played
when a game has multiple equilibria. (In general, this
final selection will depend on a variety of exogenous
circumstances.)

The Need for a Bridge. Game Theory provides
a wonderfully general notion of a mediated game. In
practice, however, trusted mediators are hard to find,
and Game Theory does not address whether the players
alone might be able to replace the trusted mediator, so
as to play by themselves.

Secure Computation, on the other hand, provides
powerful notions and techniques for replacing trusted
parties with specially designed communication among
the players alone. As we explain below, however, such
replacements only apply to very simple settings: essen-
tially, when there are no payoffs.

Without payoffs, it is rational to be honest. In an
ideal evaluation where no payoffs are associated to the
outputs of f , a player has no incentive to report a
“false” private input to the trusted party in the ideal
evaluation. This continues to be true if payoffs are as-
signed but are always the same, or if the payoff struc-
ture is sufficiently simple (as in Halpern and Teague
[9]). But if general payoffs are associated to f ’s out-
puts, then honesty may be irrational, both in an ideal
and in a real evaluation of f . In an ideal evaluation,
rather than honestly reporting his original input, it
may be rational for a player to affect f ’s output by
reporting a different input, so as to improve his pay-
off.2 Similarly, in a real evaluation, rather than blindly
following his prescribed instructions, it is rational for
a player to deviate from them when doing so enables
him to receive a higher payoff. Of course, honesty is
often enforced by morality; but if deviating causes a
player to suffer moral agony, then this price should be
explicitly modeled in the player’s true payoffs!

1Indeed, there are many possible kinds of equilibria. See [6].
2Notice that reporting a false input to the trusted party is

rather easy. Since each input is private, no one can tell whether a
player has switched his. Even within the constraints of a publicly
known distribution for all private inputs, a player would still have
substantial freedom in reporting a different input without being
caught.

2 Rational Secure Computation

We strongly advocate a new direction for Secure
Computation. Currently, Secure Computation does
not model incentives for the players. Yet, if its cor-
rectness and privacy will used for any real-world pur-
pose (rather than for “pure fun”), then the players will
prefer some of its outputs to others, and will thus ra-
tionally respond to their incentives. For this reason,
having security depend on honesty is dangerous when
being honest is being irrational. To be safe,

Security must be guaranteed even when all players
pursue their selfish interests.

This is the very goal of our paper. To achieve it, we
put forward the new notion of Rational Secure Com-
putation (in particular, that of a Rational SFE) and
provide its first implementation.

The new notion may also be cast in the ideal/real
paradigm, by explicitly adding incentives to both set-
tings. In essence, the ideal setting becomes a mediated
game Γ and the real one an unmediated game G, and
security means that rational players must find the two
games totally equivalent.

More specifically, Γ is a finite, normal-form, medi-
ated game of incomplete information. Again, the n
players have private types t1, . . . , tn, and Γ is played in
two stages: first every player i privately communicates
a report mi ∈ Mi to the mediator; then the mediator
announces an outcome y obtained by evaluating a pre-
specified function f on the received reports. The payoff
of every i is ui(y, ti)—more generally, ui(y, t1, . . . , tn).
However, since the mediator is trusted but the players
are not, for completeness, an outcome must be defined
in all contingencies, including when a player aborts,
that is, acts outside his specified boundaries by not
sending any report or by sending a report outside his
message space —e.g., an insult to the mediator. We
thus assume that, when player i aborts, a predeter-
mined, substantial monetary fine F is imposed on i,
and that no information about the players’ reports is
revealed.3

On the other hand, G is an unmediated, extensive-
form game of incomplete information (having the same
players, type sets, outcome set, and utility functions as
Γ). The players of G jointly compute y by exchanging
messages in several rounds, over a given communica-
tion channel. Any player i can abort G’s communi-
cation prematurely, in which case the same predeter-
mined outcome Yi is realized as when i aborts in Γ.

3Thus aborting is not part of any equilibrium. Without loss
of any generality, we can think that the communication with the
mediator is sequential, so that it is clear who aborts first.

2



Because rationality yields equilibria, to capture the
intuition that rational players have no preference be-
tween playing Γ or G, we make the following

Definition (Informal): G rationally and se-
curely simulates Γ if the following two conditions
hold:

1. For any equilibrium of Γ, of any strength (e.g.,
Bayesian-Nash, dominant strategy, ex post, etc.),
there exists an equilibrium of G that has the same
strength and induces the same payoffs for every
player—and vice versa for any equilibrium of G.

2. The privacy of the players in Γ is exactly preserved
in G: no group of players (whether collaborating
or not) may acquire more information about other
players’ types or reports in G than they may in Γ.

(As we shall see, our implementation actually achieves
a more demanding notion of Rational Secure Com-
putation. However, the above formulation is rather
simpler and potentially allows for many more imple-
mentations.) Rational Secure Computation is actu-
ally achievable in a reasonable communication model.
Namely, we show the following

Main Theorem (Informal): Any mediated
game of incomplete information Γ can be ratio-
nally and securely simulated by a ballot-box game
G.

A ballot-box game is an extensive-form game of incom-
plete information. It includes physical actions such as
sealing a message into an envelope, packing up to 5
envelopes into a single, larger one, and randomizing
the order of a set of envelopes via a bingo-like device,
the ballot box. It ends with a special swap operation, in
which all the players simultaneously exchange specified
sets of sealed envelopes. Each player then learns the
outcome by opening all the envelopes in his possession.

The ballot box is perhaps Humanity’s oldest and
best “security assumption.” Indeed, it has been relied
upon for thousands of years for securely computing a
very specific function: the tally function.4 In proving

4To compute y = tally(b1, . . . , bn) =
∑

i bi, each player i seals
his own private binary vote bi into a ballot and inserts it into the
ballot-box. After this, the ballot-box “returns a random permu-
tation of the inserted ballots,” and all ballots are publicly opened
and read, enabling all players to compute y without revealing in-
dividual bi’s. When paper was expensive, pebbles and tablets of
clay were used in place of envelopes. Ballot-box tallying of votes
is the golden standard of secure computation: it works no mat-
ter what computational power “bad” players may have, and no
matter how many bad players there may be. The worst bad
players can do is abstaining from “voting” or “inputting votes

our Main Theorem, we actually show that the secu-
rity power of the ballot box is universal: with minimal
changes it can be used to privately and correctly com-
pute any function.

As for other universal results in computation (Re-
cursive Functions, Gödel numberings, etc.) the key to
our result is “equating subjects and objects.” In our
case, we represent data and operations as permuta-
tions, physically represented as sequences of envelopes,
and then use the ballot box in order to effectively in-
terpret a sequence of envelopes (data) as an algorithm
(acting on other data). In order to do so, we shall make
fundamental use of the original encoding of [8], indeed
its first use after almost 20 years!

Perfection First. Cryptographic notions, such as
Zero Knowledge, often possess both perfect and com-
putational versions. In this paper we introduce the per-
fect version of Rational Secure Computation. That is,
each computation is correct with probability 1, and is
private in an information-theoretic sense (i.e., it is not
affected by the computational power of the players).
Furthermore, neither property can be disrupted by any
coalition of players, no matter how large. Finally, it
enjoys “perfect composibility.” Indeed, it satisfies the
information-theoretic conditions of Dodis and Micali
[5]. Therefore, in the language of Canetti [4], it auto-
matically enjoys universal composibility in the informa-
tion theoretic setting. In addition, it also enjoys other
valuable properties, such as synchronous reducibility.
All these composibility properties imply that, although
we focus in this extended abstract on simulating ”one-
shot” mediated games, our notions and techniques gen-
eralize to simulating mediated games involving several
rounds of interaction with the trusted mediator.

We believe that other perfect implementations of
Rational Secure Computation will soon be available.
But we also believe that relaxing our stringent secu-
rity requirements may become necessary to yield still
meaningful notions that possess more practical imple-
mentations. Let us remark, for instance, that the con-
struction of [13] can yield a computationally bounded
version of Rational Secure Computation, albeit in a
more “liberal” ideal setting.

different from the ones they originally had in mind.” At first
glance, however, it would appear that the ballot-box mechanism
is so specifically tailored to securely computing the tally function
that it cannot be used for securely computing other functions. If
tally(b1, . . . , bn) were defined to return only the “majority bit”
and not the actual number of votes, then computing it privately
and correctly would no longer be as easy.

3



3 The Intuitive Version of Our Notion

Prior to informally sketching what it means for G
to simulate Γ rationally and securely, we find it useful
to highlight the difficulties that must be addressed.

Two Main Difficulties. First, in Γ each player
sends a single message to the mediator, without see-
ing the messages of other players. Quite differently, in
G, players send many messages in response to the mes-
sages they receive. One would thus expect that many
more equilibria would arise from this much richer struc-
ture, making it impossible to deliver on our promised
equilibrium-preservation property. Second, our players
have private types and it may sometimes be in their
interest to signal information about their types, as il-
lustrated by the following

Example. Consider a mediated 2-player game Γ of
incomplete information, in which (only) Player 1 can
be of two types, t1 or t′1, each equally likely. There are
two possible messages that can be sent by each player:
{U,D} for Player 1 and {L,R} for Player 2. Payoffs of
the players depend on Player 1’s type and are given by
the following two matrices:

t1 L R
U 2, 2 0, 0
D 0, 0 0, 0

t′1 L R
U 0, 0 0, 0
D 0, 0 1, 1

Since the players can send messages only to the medi-
ator, there is no way for Player 2 to know which type
of Player 1 he is facing. Thus there are essentially two
equilibria here; namely, the following Bayesian-Nash
equilibria: (E1) Player 2 plays L, Player 1 of type t1
plays U , Player 1 of type t′1 can play anything; and
(E2) Player 2 plays R, both types of Player 1 play D.5

Note that equilibrium E1 is the best for Player 2, and
gives him an expected payoff of 1.

For the above example’s Γ, our definition in par-
ticular requires that any communication game G that
rationally and securely simulates Γ must have only two
equilibria, equivalent to E1 and E2. But, on the sur-
face, this requirement seems impossible to achieve: if
Player 1 were allowed to send even a single message to
Player 2, he could surely signal the one bit of informa-
tion corresponding to his type. Such a signal immedi-
ately introduces a new equilibrium: namely, depending
on whether Player 1 signals t1 or t′1, Player 2 respec-

5If we were to eliminate weakly dominated strategies, only
equilibrium E1 would survive (with Player 1 of type t′1 playing
D).

tively plays L or R.6 This new equilibrium gives Player
2 an expected payoff of 1.5, higher than he could get
in any equilibrium of Γ.

Two Questions and Two Answers. Before sketch-
ing our notion of security and how it addresses the
above difficulties, we would like to answer two ques-
tions that the above example is likely to raise.

First: Why should the players not benefit from some
additional equilibria? The answer is that such addi-
tional equilibria may be detrimental to “the larger con-
text.” For instance, in mechanism design, the whole
point is to find a game whose equilibria implement a
desired function, typically deemed to be beneficial to
Society. If the players were able to introduce additional
equilibria that benefit solely them, Society may suffer.

Second: Can signaling be prevented in G by just re-
stricting the messages players are allowed to send? The
answer is no. Preventing players in G from saying out-
right “I am of type X” is not enough. In order to
guarantee privacy, players’ communication strategies
in G must be probabilistic (see [7]). But even a min-
imal amount of entropy in a communication strategy
enables steganography, that is, subliminal communica-
tion between two players that is provably undetectable
by any one else (see [1]).

The Essence of Rational Secure Computation.
Assume that in Γ the mediator evaluates a function
f : M1 × · · · × Mn → Y . We say that G perfectly
simulates Γ if the following properties hold:

1. At any time before G ends, the information avail-
able to the players coincides with that available
to them before the game begins.

2. G begins with an input stage in which each player
i, independently, commits to one of his possible
inputs. (Any later attempt of i to change his com-
mitted input results in an abort.)

3. G is forced-action: namely, (1) the players act
in predetermined order (by acting out of turn, a
player aborts); (2) during the input stage, for any
possible input, there is a single sequence of ac-
tions a player may take for committing it without
aborting the game; and (3) after the input stage,
when it is a player’s turn to act, there is a single
action he may take without aborting.

4. If no player aborts G then all players receive out-
puts distributed identically to those produced by
a random evaluation of f on the committed in-
puts.

6Notice that since the players’ incentives are perfectly aligned,
there is no issue of whether Player 2 believes Player 1. Player 1
has no incentive to lie and thus Player 2 can trust the signal.

4



Remark. Our forced-action property is absolutely cru-
cial to the notion of Rational Secure Computation. It is
very demanding, but not impossible to implement. Let
us clarify that forced-action does not mean that each
player’s action is predictable by the other players, nor
that it is immediately apparent when a player chooses
an “alternative action.” For example, in a ballot-box
game, player i’s only “non-aborting” action may con-
sist of sealing a specific value v into a specific envelope
E. But the other players may not know v: G’s be-
ing forced-action only guarantees them that if i does
not seal the “right” value, G will eventually abort. By
sealing in E a value v′ instead, i would be committing
to his aborting G, but his abort may become apparent
only later on —e.g., when opening E will reveal a con-
tent different from that of another, specific envelope.

Let us now sketch how the above properties collec-
tively capture our desired equivalence of Γ and G for
rational players.

First of all, notice that, for any player i, aborting
in G is fully equivalent to aborting in Γ. Though i
may decide to abort at any time, Property 1 guaran-
tees that when making this decision he has absolutely
no additional information about other players’s types
or inputs; nor any idea of what the outcome of the
game will be. Thus, i may decide to abort in G with
exactly the same information as in Γ. To be sure, i
can abort Γ only at the very beginning. In G, instead,
he can choose the communication round at which to
abort. This choice provides him with the ability to sig-
nal information about his own type, if he so desires.
But this signaling does not affect any payoffs, because
whenever i aborts the outcome always is the default
value Yi.

Second of all, notice that for any player i, provided
that no player aborts the game, sending a report mi to
the mediator in Γ is fully equivalent to committing mi

in the input stage of G. In either case, mi cannot be
changed any more: in Γ because there is no other action
available to player i, and in G because of Property
2. Furthermore, in either case, f will be evaluated
correctly: in Γ thanks to the trusted mediator, in G
thanks to Property 4.

Finally, Property 3 implies that there are no strate-
gies in G available to player i other than “abort” or
“commit to an input mi and then follow the prescribed
strategy until the very end.” Therefore, as shown
above, these strategies perfectly correspond to those
available to i in Γ: namely “send a report 6∈ Mi” and
“send a report mi ∈ Mi.”

Let us now show how to implement this compelling
notion with the help of envelopes and a ballot box.

4 Our Intuitive Communication Model

In this section we informally present the communi-
cation network in which ballot-box games are played.

Conceptually, we envisage a group of players, seating
far apart around a large table, communicating in two
ways. The first way is via broadcasting: a player stands
up and loudly utters a given message. The second way
is via identical, opaque envelopes (and super-envelopes)
and a ballot box. Informally, a player can choose a
message, write it on a piece of paper and seal it into a
new, empty envelope. So long as it is not opened, the
envelope totally hides and guarantees the integrity of
its content. Only the owner of a sealed envelope can
open it, either privately (in which case —though all
other players are aware that he is opening it— he will
be the only one to read its content) or publicly (in which
case all players will learn its content). A player owns
a sealed envelope if it is physically close to him. By
definition, the player originally sealing a new envelope
owns it. After that, ownership of an envelope can be
transferred to another player by tossing it to him.

A player can also publicly put up to 5 of his en-
velopes into a new super-envelope E, in which case
none of them can be opened before E. All super-
envelopes are again opaque and identical to each other,
but have a slightly larger size than (ordinary) en-
velopes. A super-envelope E thus tightly packs its
sub-envelopes, so that their relative order (counting —
say— from E’s front) does not change when E is moved
about. The rules of ownership for super-envelopes are
the same as for envelopes. There is only one possible
way for a player i to open a super-envelope E of his:
all players observe that i has opened E, and E’s sub-
envelopes become “exposed” again, and can thus be
manipulated (e.g., opened or transferred) individually.
Such sub-envelopes always guarantee the integrity and
privacy of their contents.

Envelopes and super-envelopes always stay above
the table and their transfers are always tracked by
the players. The players can thus “mentally assign”
to each envelope or super-envelope an identifier, j, in-
sensitive to any possible change of ownership. The
only exception is when a player i publicly puts some
of his envelopes or super-envelopes into a ballot box:
when they are taken out, their contents will remain un-
changed and private, but their identities are randomly
permuted, in a way that is unpredictable to all players.
We shall use the ballot box to permute either (1) only
envelopes, or (2) only super-envelopes with the same
number of envelopes inside.

5



5 Structure of Our Protocol

The high-level structure of our protocol is essentially
that of [8], with minimal adjustments demanded by our
communication model. It is only in the implementation
of this high-level structure that we make essential use
of our ballot box and depart from [8].

Computing with Permutations. The following is
our rendition of Barrington’s way [2] to compute with
permutations in S5, the symmetric group of 5 elements.

Six Constants. There exist six permutations in
S5, denoted by Id, a, b, [a → b], [a−1 → a], and
[aba−1b−1 → a] which satisfy the following properties:
• Id is the identity permutation.
• aba−1b−1 6= Id.
• [a → b]−1a[a → b] = b.
• [a−1 → a]−1a−1[a−1 → a] = a.
• [aba−1b−1 → a]−1aba−1b−1[aba−1b−1 → a] = a.

Proof: a = 1 2 4 5 3, b = 25 3 4 1, [a → b] = 3 4 1 2 5,
[a−1 → a] = 1 2 4 5 3, and [aba−1b−1 → a] = 1 3 2 4 5.

Three Operators. Let “ — ” , “ ′ ” and “ ∗ ” be
operators on S5 defined as follows: for any σ ∈ S5,
• σ = [a → b]−1σ[a → b]
• σ′ = [aba−1b−1 → a]−1σ[aba−1b−1 → a]
• σ∗ = [a−1 → a]−1σ[a−1 → a]−1

Bit Representation. 0 is represented by Id, and 1
by a.

AND and NOT. If σ1 and σ2 represent bits b1 and b2,
respectively, then

¬b1 = (σ1a
−1)∗

b1 ∧ b2 = (σ1σ2σ
−1
1 σ−1

2 )′

Enveloped Permutations. We need a way to en-
code permutations in S5 for use in our communication
model.

If σ ∈ S5, its corresponding enveloped permu-
tation, denoted by the bold character σ, is a se-
quence of five envelopes whose contents are, respec-
tively, σ(1), σ(2), σ(3), σ(4), σ(5). Viceversa, if σ is an
enveloped permutation, we denote by σ its correspond-
ing permutation.

Circuits and Permutation-Labeling. We assume
that the finite function to be evaluated is represented
as a combinatorial logic circuit, C : (Σk)n → Σk.

Evaluating C on specific inputs x1, . . . , xn yields a
specific bit value for each wire w of C. Whenever the
inputs in question are clear, we simply denote w’s bit
value by bit(w).

A permutation-labeling of C is a function mapping
each wire w of C to a label (~P , p), where p ∈ Sn is a
permutation of the n players and ~P is a sequence of n
permutations in S5: ~P = (P1, . . . , Pn) ∈ (S5)n.

A permutation labeling of C is valid, relative to in-
puts x1, . . . , xn, if the label (~P , p) of each wire w sat-
isfies the following

Fundamental Invariant:

1. The permutations ~P are random and (n−1)-wise
independent elements of S5.

2. The product P1 · · ·Pn equals permutation a if
bit(w) = 1 and Id otherwise.

3. If w is not an input wire for Player i, then Player
i knows permutation Pp(i) and has no information
about any permutation Pp(j) for all j 6= i. If w
is an input wire for Player i, then Player i knows
all permutations P1, . . . , Pn.

Overview of the Joint Computation. For all pos-
sible private inputs x1, . . . , xn, the players compute a
valid permutation labeling of C by the following con-
ceptual steps.

1. Initial Step. For each input wire w of Player j,
Player j computes a valid label (~P , p), and gives
to each player i the enveloped permutation P p(i).

2. Inductive Step. For each gate g, and for each out-
put wire w of g, the players use their enveloped
permutations for g’s input wire(s) to jointly com-
pute enveloped permutations P 1, . . . , P n such
that each player i owns P p(i), and (~P , p) is a valid
label for w.

3. Final Step
After processing all gates as in the Inductive Step,
each output wire w has a valid label (~P , p) such
that the product P1 · · ·Pn is Id if bitw = 0, and a
otherwise. However, each enveloped permutations
P j belongs to a different player. Therefore in the
final step, the players swap envelopes such that
for all output wires w, if bit(w) is a bit of Player
i’s output then Player i now owns the enveloped
permutations P 1, . . . , P n. After the swap, he can
open all relevant envelopes to learn P1, . . . , Pn and
thus compute the bit carried by w.7

7This envelope swap is a somewhat unusual operation in
requiring a simultaneous transfer of envelopes among multiple
players. Nonetheless it is simple, and is a publicly observable
operation: indeed anyone can observe whether all envelopes have
been transferred to the proper recipients prior to be opened. As
such, swaps can be realized in at least three ways. First, swaps
could be performed by a physical device. One can imagine, for
example, an n player version of the “revolving door style”-devices

6



6 Implementing The Initial Step

In this extended abstract we lack sufficient space
to implement in detail the above high-level structure.
Therefore, we have chosen to discuss informally our
techniques for implementing just the Initial Step. The
Inductive Step is somewhat harder, but relies on similar
ideas. The Final Step is instead quite straightforward.

A Naive Approach. Assume that input wire w be-
longs to Player i. Naively, one may think that i may
randomly generate a valid label for w as follows. First,
he randomly selects permutations P1, . . . , Pn−1. Sec-
ond, he computes Pn so that P1 · · ·Pn = a if his input
bit is 1 and Id otherwise. Third, he prepares enveloped
permutations P 1, . . . , P n. Fourth, he gives a suitable
zero-knowledge proof that indeed the product of their
underlying permutations is either Id or a. Fifth, he
transfers each enveloped permutation P j to Player j.
Finally, each player j opens (and reseals) P j , to learn
Pj and fulfill the last requirement of the Fundamental
Invariant.

This simple procedure, however, suffers of several
drawbacks. The most important one is that the above
procedure is not forced action. (In particular, Player
i has total freedom in selecting Pj and therefore —
since there are 120 permutations in S5— he could triv-
ially signal log 120 ≈ 6 bits of information to Player
j through his selection of Pj . In addition, through a
traditional zero-knowledge proof, Player i has the op-
portunity of additional random choices, which he can
use to steganographically signal even more information
to other players.) Furthermore, the above procedure
is not correct with probability 1, as required by our
perfect notion of security. Indeed, a traditional zero-
knowledge proof admits a positive, though negligible,
soundness error.

(The reader should realize that using the ballot box
to choose P 1, . . . , P n−1 and then computing P n so
that P1 · · ·Pn = a or Id, is equally naive, though for
more subtle reasons!)

employed in cash-for-goods exchanges in banks, gas-stations, etc.
Second, swaps could be performed by a referee. That is, any
agent that can perform public actions and is fully accountable
for such actions. This is very different from a mediator who is
trusted to perform secret computations on private data, because
a referee is caught whenever he deviates, he could be punished
for breach of contract by a court system. Thirdly, swaps could
be handled by incentives. For instance, a weaker version of swap
—suitable for many applications— could be implemented by hav-
ing all players give their to-be-transferred sets of envelopes to a
designated player i, and then instructing i to distribute such sets
to the proper recipients without opening any envelope. If a pun-
ishing outcome for Player i is automatically realized whenever
i does not implement the swap correctly, then it will be in i’s
interest to properly transfer the sets of envelopes.

Input Commitment. To avoid the above draw-
backs, we have Player i perform the Initial Step for
input wire w as follows. First, Player i must commit
to his input bit b. He does this by privately creating
an enveloped permutation ρ such that ρ = Id if his bit
is 0 and ρ = a otherwise. Player i then lays these five
envelopes on the table where he cannot change them.

Shortly, Player i will need a second copy of ρ. There-
fore, he clones ρ as follows. First, he publicly creates
three copies of Id: Id1, Id2 and Id3. (That is, he pub-
licly writes the values “1”, “2”, “3”, “4” and “5” on five
pieces of paper and seals them, in order, into a sequence
of five envelopes. He then does the same for a.) Next,
he creates five new super envelopes so that super enve-
lope k contains the kth envelopes of Id1, Id2 and Id3.
He places these five super envelopes into the ballot-
box and “shakes it” so as to randomly reorder the five
super envelops. Next, Player i opens the five super en-
velopes, and from their exposed sub-envelopes he ob-
tains three new enveloped permutations, σ1,σ2, σ3, as
follows: the kth envelope of every σj is one of the three
sub-envelopes of the kth super envelope returned by the
ballot box. Notice that by using the ballot box in this
fashion, three properties hold: (1) everyone is guaran-
teed that σ1 = σ2 = σ3 = σ, (2) σ is a random element
of S5, and (3) no one — not even i — knows σ. At this
point, Player i privately opens, reads and reseals each
envelope of σ3 so that now he is the only one to know σ.
He then i computes and broadcasts π, a permutation
in S5 such that πσ = ρ. Note that since σ is random
and independent of ρ, so is π. Therefore, broadcasting
π provides no information about ρ —and thus about
i’s private input bit b— to any other player. Finally,
Player i publicly reorders the envelopes of σ1, σ2 and
σ3 according to π so as to obtain three new enveloped
permutations τ 1, τ 2 and τ 3. All other players moni-
tor that each σj is indeed reordered according to the
broadcast permutation π and thus all other players are
guaranteed that τ1 = τ2 = τ3 = πσ = τ . However, they
have no reason to believe that τ = ρ. Therefore, Player
i proves τ = ρ in “perfect zero-knowledge” as follows.
First, Player i creates five super envelopes such that the
kth super envelope contains the kth envelope of τ 3 and
the kth envelope of ρ. Second, he uses the ballot box to
randomly reorder these five super envelopes. Finally,
he publicly opens each super envelope E returned by
the ballot box, and then E’s two sub-envelopes so as to
publicly show that they contain a pair of equal values.
This concludes, i’s cloning of ρ: Everyone knows that
τ1 = τ2 = ρ, but nobody has gained any information
about ρ. In particular, therefore, no one has evidence
that ρ is actually equal to a or Id. We shall denote the
two clones produced by this procedure by ρ and ρ′.

7



Player i proves, in “perfect zero-knowledge”, that
“ρ = a or ρ = Id ” as follows. First, he publicly creates
two enveloped permutations: Id and a. Next, he packs
the five envelopes of Id, in order, into a single super
envelope and similarly he puts the envelopes of a, in or-
der, into a second super envelope. Next, he places both
super envelopes into the ballot-box, that returns them
in random order. Player i then opens both returned su-
per envelopes to expose two enveloped permutations,
call them α and β, such that no one knows which is
a and which is Id. At this point, Player i privately
opens, reads and reseals each envelope of α and β, so
he is now the only one who knows which is a and which
is Id.8 Without loss of generality assume that Player
i’s committed permutation ρ is equal to α. Player i
then announces that ρ = α and proves it in “perfect
zero-knowledge” as when proving τ = ρ. At this point,
everyone knows that ρ = α and everyone knows that
α is either Id or a, therefore, Player i has successfully
proven that ρ properly encodes a bit.

Permutation Labeling. At this point, Player i
must compute from ρ, in a forced-action manner, en-
veloped permutations P 1, . . . , P n such that (~P , Idn) is
a valid label of his input wire w, where ~P = P1, . . . , Pn

and Idn is the identity of Sn. Doing so requires several
steps.

To begin with, for j = 1 to n− 1, Player i generates
P j by publicly creating an enveloped permutation Id
and then using the ballot box to randomly permute
these five envelopes. Next, Player i privately opens,
reads and reseals each envelope of P 1, . . . , P n−1 so as
to learn P1, . . . , Pn−1. Finally, he computes Pn so that
P1 · · ·Pn = ρ and generates the enveloped permutation
P n.

At this point, all other players are convinced that
P 1, . . . , P n−1 are enveloped permutations, but they do
not know whether P n is an enveloped permutation,
much less that it is the particular enveloped permuta-
tion such that P1 · · ·Pn = ρ. Player i in essence pro-
vides a “perfect zero-knowledge proof ” of both facts as
follows. First, for each j, he uses the same cloning pro-
cedure of Input Commitment to produce a clone P ′

j

of P j . (Notice that, if P n is not an enveloped per-
mutation, then our cloning procedure is guaranteed to
abort. Thus, if Player i succeeds in cloning every P j ,
he has a fortiori proved in perfect zero-knowledge that
P n is an enveloped permutation.) Next, Player i uses

8Even without the ability to reseal an envelope, we could still
achieve Rational Secure Computation. However, doing so would
require making additional copies of every enveloped permutation
in our protocol. We find this makes describing our protocol cum-
bersome and so for convenience we assume that envelopes can be
resealed.

n − 1 times the following procedure (for multiplying
two enveloped permutations) to produce P from P ′

1,
. . . , P ′

n.

Procedure EnvMult. Let α and β be two en-
veloped permutations owned by and known to the same
player i. To produce an enveloped permutation γ and
prove in perfect zero knowledge that γ = αβ, Player i
acts as follows. First, he publicly creates an enveloped
permutation Id. Next he creates five new super en-
velopes, E1, . . . , E5. He packs into each Ek a pair of
envelopes: the first is the kth envelope of Id, and the
second is the kth envelope of β. He then uses the bal-
lot box to obtain E′

1, . . . , E
′
5, a random reordering of

E1, . . . , E5. Next, he publicly opens E′
1, . . . , E

′
5, and

organizes the “exposed” envelopes into two new en-
veloped permutations, µ and ν: the kth envelope of µ
(respectively, ν) is the first (respectively, second) enve-
lope from E′

k. Therefore, everyone is guaranteed that µ
is a random element of S5 (unknown to everyone), and
that ν = µβ. At this point, Player i privately opens,
reads and reseals each envelope of µ, thus becoming
the only player to know µ. Then, he computes and
broadcasts π, a permutation in S5 such that πµ = α.
Note that since µ is random and independent of α and
β, so is π; thus broadcasting π provides no additional
information about α or β. Finally, Player i publicly
reorders the envelopes of µ according to π so as to
obtain a new enveloped permutation φ. Similarly, he
reorders the envelopes of ν according to π to obtain
γ. All other players monitor that both µ and ν are in-
deed reordered according to the broadcast permutation
π, and are thus guaranteed that γ = πν and φ = πµ.
Therefore, since ν = µβ, all players know that γ = φβ.
However, all players other than i have no reason to
believe that φ = α. Therefore, Player i gives a per-
fect zero-knowledge proof of this fact using the same
“prove equal” procedure of Input Commitment. After
this proof all players are convinced that γ = αβ as
desired.

After Player i finishes using EnvMult n− 1 times,
all players are guaranteed that P = P ′1 · · ·P ′n, and yet
gain no additional information about any P ′j . Because
each P ′

j is a clone of P j , they are also guaranteed that
indeed P = P1 · · ·Pn.

At this point, Player i proves in perfect zero knowl-
edge that P = ρ′, thus convincing all other players
that the product of P1, . . . , Pn is indeed ρ.

Finally, Player i transfers each enveloped permu-
tation P j to Player j, who privately opens, reads
and reseals each of its envelope to learn Pj . Thus,
(~P = (P1, . . . , Pn), Idn) is a valid permutation labeling
of w.

8



7 Implications for Mechanism Design

A game can be viewed as having two parts: a context
and a mechanism. Informally, the context describes the
n players, their type space T = T1× · · · ×Tn, the joint
distribution p over T , the set of possible outcomes Y ,
and the utility function ui : T ×Y → R for each player
i. The mechanism describes the set of pure strategies
available to the players and the function g that selects
the outcome of the game based on the strategies actu-
ally chosen by the players.

Ultimately, in a game G, the outcome of an equi-
librium E is a (probabilistic) function of the players’
actual types, t1, . . . , tn. Letting µ be such a function,
we say that E implements µ. We further say that G
fully implements µ if all equilibria of G implement µ.

A fundamental problem of Mechanism Design is the
following: Given a context C and a social-choice func-
tion µ, find a mechanism M such that the resulting
game G (fully) implements µ.9

In essence, the designer seeks to ensure that the
players find it in their own interest to reach the out-
comes he desires: if he successfully “extends” a con-
text C to a game G, then, by playing rationally (i.e.,
at equilibrium), the players produce outcomes that de-
pend on their private types in the desired manner (i.e.,
as specified by µ). Given this goal, it is no surprise that
Mechanism Design is crucial to so many human activ-
ities! Allocation of private goods, provision of public
goods, design of markets (e.g., of eBay auctions), of
voting procedures, social planning, etc., all stand to
benefit from it.10

Notice that, though the distribution of players’ types
is widely known, only the players themselves know their
actual types. Therefore, not even a dictator could se-
lect and impose an outcome y = µ(t1, . . . , tn), unless
the players truthfully reveal t1, . . . , tn. Thus, it is un-
surprising that Mechanism Design—ensuring that the
socially desired outcomes arise solely by exploiting the
players’ self interest—is very hard.

Simplifying Mechanism Design. We guarantee
that, given a context C, it suffices for a mechanism
designer to find just an ideal mechanism, that is one
that can count on the help of a trusted mediator. Our
perfect simulation of ideal games straightforwardly im-
plies that such an ideal mechanism can automatically
be transformed to an equivalent “ordinary” one, that

9The term “social-choice function” derives from the fact that,
typically, the designer wishes to produce outcomes that are de-
sirable for Society at large.

10For an introduction to the subject see [12] and [11], for an
excellent overview see [16]. On mechanism design in incomplete
information environments see [14] and [10].

still fully implements the desired µ. Since designing
ideal mechanisms is certainly easier, our result simpli-
fies the general Mechanism-Design problem.

In addition, whenever multiple equilibria are not a
concern, our result fully dispenses with the need for
a mechanism designer. Let us explain. The famous
Revelation Principle tells us that, if any given µ is
implementable at all, then it is implementable by a
very simple ideal mechanism: the Direct Mechanism
Dµ in which every player i truthfully reports his actual
type ti to the trusted mediator, who then announces
y = µ(t1, . . . , tn). Our construction automatically gen-
erates an ordinary mechanism implementing µ, if any
such mechanism exists, by replacing the mediator of
Dµ. Unfortunately, this may not be a full implemen-
tation of µ, because Dµ may have additional equilib-
ria not implementing µ. However, if µ is dominant-
strategy incentive compatible (i.e., if truth-telling is a
dominant-strategy equilibrium), then the presence of
additional equilibria becomes “practically irrelevant:”
if a player i has a strategy that is best for him no mat-
ter what other players might do, he has no reason to
play any other strategy! Dominant-strategy equilib-
ria are arguably the strongest equilibria, and the ones
most sought after in Mechanism Design. Indeed, the
problem of Mechanism Design is often defined in terms
of dominant-strategy equilibria. We thus make Mecha-
nism Design fully automatic in a very important special
case.

Privacy and Mechanism Transparency. We hold
these truths to be self evident: (1) People care about
Privacy; (2) Ideal mechanisms preserve Privacy better
than any other mechanisms; and (3) Our construction
preserves perfectly the Privacy of ideal mechanisms.

Privacy is indeed a crucial aspect to our simulation
of ideal games. Beyond simplifying the design of future
mechanisms, we also “increase the Privacy of existing
mechanisms.” Let us explain.

In the context of an auction of a single item,
the most popular social-choice function is the famous
second-price function. In essence, this is the function
µ demanding that the player who most values the item
should win it, and that the price he should pay is the
second highest valuation. A typical mechanism for im-
plementing µ consists of having the players seal their
bids into envelopes, and then publicly opening all of
them. The winner is the player with the highest bid,
and the price is the second highest bid. Note that, for
this simple mechanism, choosing a bid coinciding with
your own private valuation for the item is a dominant-
strategy equilibrium. Note too that this simple mecha-
nism is essentially unmediated. Unfortunately, at equi-

9



librium, it obliges all the players to reveal their private
types (in this context, their private valuations of the
item for sale). Thus, some players might be reluctant
to use such a mechanism.

An alternative, but mediated, mechanism for the
same context is the following: the players give their
sealed bids to the trusted mediator (i.e., the auction-
eer), who then privately opens them and announces
the outcome (i.e., winner and price) together with all
losing bids (in a random order). Though mediated,
this mechanism is reasonably “transparent.” That is,
it does not totally rely on the honesty of the mediator:
anyone whose losing bid is not announced will surely
cry foul. However, it still causes a substantial privacy
loss, and (since the winner’s bid is not announced) it
enables a dishonest auctioneer to collude with a given
player and declare him the winner, regardless of his
bid.

Another mediated mechanism is that in which the
players submit sealed bids to the mediator, who then
only announces the winner and the price (i.e., the sec-
ond highest bid). Clearly, this mechanism enjoys the
maximum possible privacy, but it is the least transpar-
ent of the three, and is rarely used in practice [15].

Perhaps, our instinctive preference for more trans-
parent mechanisms might result in choosing mecha-
nisms and social-choice functions that tend to reveal
more information than strictly necessary. In any case,
our result succeeds in “disentangling Trust and Pri-
vacy” in auctions and all other contexts. It dispenses
with the need to trade-off between the amount of infor-
mation that is publicly revealed and the amount of trust
bestowed on the mechanism. In particular, we provide
optimal solutions to various problems in secure auc-
tions, that have recently attracted a lot of attention (in
particular, see [3] and references therein). For instance,
our construction enables the players alone to simulate
perfectly the auctioneer of the second mediated mecha-
nism discussed above. Thus, we implement the efficient
second-price social-choice function with both maximum
privacy and maximum transparency.

More generally, our result enables us to implement
social-choice functions with “private outcomes.” In
particular, assuming that actual transactions can be
kept private, we can implement second-price auctions
where the losers learn only that they have lost, the win-
ner learns that he has won and at what price, and the
seller learns only the winner and the price.

Privacy and Modular Mechanism Design. Pri-
vacy has not received explicit attention in Mechanism
Design. In Game Theory in general, information loss is
studied only as far as it is relevant for the game at hand,

under the assumption that its players will not interact
again. In our eyes, Privacy is a strategic interest of
the players. The players’ desire for Privacy stems from
their utilitarian concerns about future interactions. In
a forthcoming paper, we generalize our present results
so as to simulate perfectly any sequence of (correlated)
mediated games. Such more general simulations will
enable us to achieve Modular Mechanism Design.

Modularity —in essence, the ability of breaking the
design of complex systems into a multiplicity of simpler
components— is central to Science, Engineering, and
many other human activities, but was so far unavailable
to Mechanism Design.

References

[1] L. von Ahn, N. Hopper and J. Langford. Provably se-
cure steganography. In Crypto ’02, 2002.

[2] D.A. Barrington. Bounded-width polynomial-size
branching programs recognize exactly those languages in
NC1. In Proceedings of STOC ’86. ACM, 1986.

[3] F. Brandt and T. Sandholm. (Im)possibility of uncon-
ditionally privacy-preserving auctions. In Proc of 3rd
AAMAS. ACM, 2004.

[4] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Proc of 42nd
FOCS, 2001.

[5] Y. Dodis and S. Micali. Parallel reducibility
for information-theoretically secure computation. In
Crypto ’00, 2000.

[6] D. Fudenberg and J. Tirole. Game Theory. MIT Press,
Cambridge, Massachusetts, 1991.

[7] S. Goldwasser and S. Micali. Probabilistic encryption.
Journal of Computer and System Science, 28(2), 1984.

[8] O. Goldreich, S. Micali and A. Wigderson. How to play
any mental game. In Proc. of STOC ’87. ACM, 1987.

[9] J. Halpern and V. Teague. Rational secret sharing and
multiparty computation. In Proc of 36th STOC, 2004.

[10] M. O. Jackson. Bayesian implementation. Economet-
rica, 59(2):461–477, 1991.

[11] M. O. Jackson. Mechanism Theory. Optimization and
Operations Research. EOLSS Publishers, Oxford, UK,
2003.

[12] M. O. Jackson. A crash course in implementation the-
ory. Social Choice and Welfare, 18(4):655—708, 2001.

[13] M. Lepinski, S. Micali and A. Shelat. Collusion-free
protocols. In Proceedings of STOC ’05, 2005.

[14] T. R. Palfrey, and S. Srivastava. Bayesian Implementa-
tion. Harwood Academic Publishers, Chur, Switzerland,
1993.

[15] M. H. Rothkopf, T. J. Teisberg and E. P. Kahn. Why
are Vickrey Auctions Rare? Journal of Political Econ-
omy, 98:94–109, 1990.

[16] T. Sjöström and E. Maskin. Implementation Theory.
Handbook of Social Choice and Welfare. 237–288, North-
Holland, 2002.

[17] A. Yao. Protocols for secure computations. In Proc.
of FOCS ’82. IEEE, 1982.

10


